報告題目:Structuring Liquids
報 告 人:Prof. Thomas P. Russell
報告時間:2019年1月2日(周三)上午9:30
報告地點:八號樓國際學(xué)術(shù)交流廳(三樓)
邀 請 人:朱錦濤/黃才利教授
報告人簡介:
Thomas P. Russell教授為國際著名高分子科學(xué)家,美國工程院院士、美國麻省大學(xué)高分子科學(xué)與工程系Silvio O. Conte杰出教授、加州大學(xué)伯克利分校兼職教授、Macromolecules副主編其研究涵蓋高分子表面界面性質(zhì)、高分子相轉(zhuǎn)變、嵌段共聚物自組裝、納米粒子自組裝、高分子基太陽能電池等眾多領(lǐng)域,曾獲2004美國物理學(xué)會Polymer Physics Prize、2004荷蘭高分子學(xué)獎 (Dutch Polymer Award)、2012美國材料學(xué)會Fred Kavli獎、2016美國化學(xué)會獎(ACS Award for Applied Polymer Science),中國化學(xué)會榮譽會士等獎項。在Science、Nature等雜志共發(fā)表論文700多篇(其中在Nature,Science主刊上發(fā)表20多篇),H-index 141,在國際高分子學(xué)界享有盛譽。
報告簡介:
The ability to manipulate and lock-in the shape of one liquid in a second, i.e structuring the liquids, allows the generation of unique materials that have the dynamics and mobility of liquids but the structural integrity of a solid. Bicontinuous fluids for separations, novel encapsulants for delivery systems, or all-liquid charge transport systems can be envisioned. Yet, these fluids have shapes that are far removed from their equilibrium shape and developing routes to kinetically lock-in these non-equilibrium shapes while retaining the local fluidity is key. We describe the in situ generation of nanoparticle surfactants that assemble at the liquid/liquid interface. When the liquids are brought into non-equilibrium shapes, the nanoparticle surfactants will jam at the interface, freezing in the shapes of the liquids. The assemblies of nanoparticles surfactants assume in-plane mechanical properties that range from liquid-like to solid-like behavior, depending on the areal density of the assemblies. By integrating superparamagnetic nanoparticles into the assemblies, the structured liquids are found to exhibit rather unusual magnetic characteristics in response to an external magnetic field. External stimuli, as for example pH, electric or magnetic fields or temperature, can then be used to re-shape the liquids, so that the structured liquids can be adaptive. We will also describe the printing of water constructs in water by the formation of polycationic-polyanionic coascervates at the interface and the unique diffusive characteristics imparted tot eh printed assemblies.